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Abstract

Analyzing underwater fish imagery is critical for ecologi-
cal monitoring but remains difficult due to visual degrada-
tion and costly annotations. We introduce FishDetector-R1,
a unified multimodal large language model (MLLM)-based
framework for fish detection, segmentation, and counting
under weak supervision. On the DeepFish dataset, our
framework achieves substantial gains over baselines, im-
proving AP by 20% and mIoU by 10%, while reducing MAE
by 30% and GAME error by 35% on counting and localiza-
tion tasks. These improvements stem from two key compo-
nents: a novel detect-to-count prompt that encourages spa-
tially consistent detections and counts, and Reinforcement
Learning from Verifiable Reward (RLVR) with a comple-
mentary paradigm that leverages sparse point labels. Ab-
lation studies further validate the effectiveness of our com-
plementary reward design, which jointly optimizes detection
and counting. Together, these findings demonstrate that our
novel framework provides a reliable solution to enable mul-
timodal large language models to achieve scalable, accu-
rate marine visual understanding via weak supervision.

1. Introduction
Understanding marine life through visual data is essen-
tial for ecological monitoring, fisheries management, and
underwater exploration [28]. Effective analysis requires
not only detecting fish but also performing instance-level
segmentation and estimating their counts, which supports
downstream tasks such as species identification, behavioral
analysis, and habitat mapping. However, these tasks remain
particularly challenging in underwater imagery, where low
visibility, color distortion, and light scattering severely de-
grade the performance of conventional vision models.

Over the past decade, a range of learning-based ap-
proaches have been proposed to address these challenges.
Fully supervised instance segmentation methods achieve
strong performance but rely heavily on large-scale, densely
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Figure 1. Our proposed FishDetector-R1 aims to achieve AI-
enabled fish image analysis with the guidance of sparse point la-
bels and text prompts.

annotated datasets [2, 5, 22, 34]. The high cost and la-
bor intensity of generating pixel-wise annotations make
such approaches difficult to scale in underwater environ-
ments [16, 17, 25]. As a more annotation-efficient alter-
native, point-level weak supervision offers significant ad-
vantages in terms of speed and scalability [4, 15]. However,
existing weakly supervised methods based on point anno-
tations often suffer from a substantial performance gap rel-
ative to fully supervised models because sparse points pro-
vide limited pixel-level guidance [14, 27]. This leaves a key
question: how can we close the weak-to-dense performance
gap in challenging underwater settings while still relying
only on sparse, scalable point-level labels?

We address this gap with two complementary ingredi-
ents. First, we find that foundation models are well posi-
tioned to fill this gap due to their transferable visual un-
derstanding capabilities from large-scale pretraining. Mul-
timodal large language models (MLLMs) like GPT-4 se-
ries [1, 12, 21], Qwen2.5-VL series [3] and Gemini se-
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ries [6, 29] combine rich semantic knowledge with strong
reasoning capability, while segmentation foundation mod-
els such as SAM [13, 24] can complement them by pro-
viding robust semantic priors for accurate mask generation
from sparse prompts, enabling effective deployment in vi-
sually challenging domains.

Second, we develop an effective framework that tailors
the MLLM to the specific challenges of underwater fish
visual analysis. We propose a novel joint detect–to-count
task formulation that turns sparse point labels into con-
sistent, verifiable reward signals to enforce spatial align-
ment between the predicted detection and counting num-
ber. Building on recent successes of Reinforcement Learn-
ing from Verifiable Rewards (RLVR) for adapting founda-
tion models [18–20, 32, 33], we fine-tune the MLLM under
this detect–to-count objective, yielding mutually reinforc-
ing gains in detection and counting while supplying precise
spatial priors that guide segmentation mask generation ef-
fectively. To the best of our knowledge, we are the first to
integrate an MLLM with a segmentation foundation model
to tackle scalable marine fish visual analysis—covering de-
tection, instance segmentation, and counting—using only
weak point-level supervision.

Together, these two ingredients constitute FishDetector-
R1 (Fig. 1), a unified framework for detection, segmen-
tation, and counting from weak point-level supervision.
FishDetector-R1 moves beyond prior approaches that treat
these tasks in isolation and yields concurrent improvements
across all three tasks. To summarize, our contributions are
as follows:
1. We propose FishDetector-R1, the first unified frame-

work to integrate an MLLM with a segmentation founda-
tion model for comprehensive marine fish analysis (de-
tection, segmentation, and counting) using only weak,
point-level supervision.

2. We design a novel joint detect–to-count learning
paradigm to adapt foundation models to the challenging
underwater domain in a complementary manner. By for-
mulating sparse point labels as verifiable rewards within
an RLVR framework, our method enforces spatial and
numerical consistency, enabling the generation of high-
quality masks from minimal annotation.

3. We conduct extensive quantitative and qualitative exper-
iments on the DeepFish dataset [22] to demonstrate the
effectiveness of our complementary reward design, and
for the first time, demonstrate performance competitive
with and even exceeding fully supervised methods.

2. Related Work
2.1. Fish Detection in Underwater Scenes
Fully supervised segmentation methods [7, 16, 34] achieve
high accuracy in underwater scenes by training on dense
pixel-wise annotations. However, such labels are time-

consuming and expensive to obtain, especially in under-
water imagery where object boundaries are often ambigu-
ous [16, 25]. To reduce annotation cost, weakly supervised
approaches [14, 15, 27] use point-level labels, which are
significantly faster to collect [4], but typically yield lower
segmentation performance due to the lack of dense spatial
supervision. This results in a clear gap in mask quality be-
tween fully and weakly supervised models. While prior
methods make progress in annotation efficiency, none have
successfully closed this performance gap on challenging un-
derwater segmentation tasks. In contrast, FishDetector-R1
is the first framework that effectively leverages only point-
level supervision to achieve high-quality instance segmen-
tation, matching and even surpassing fully supervised base-
lines on the DeepFish benchmark.

2.2. Visual Foundation Models
Visual foundation models such as SAM [13] and SAM
2 [24] provide flexible segmentation from simple prompts
like points or bounding boxes and demonstrate strong gen-
eralization across diverse visual domains. Their ability
to operate in a zero-shot setting has made them attrac-
tive for domains with limited labels. Recent adaptations
to underwater imagery, such as AquaSAM [31] and Wa-
terSAM [11], attempt to specialize these models by ei-
ther freezing encoders or introducing lightweight adapters
to improve segmentation under challenging visual condi-
tions like turbidity and color distortion. While effective,
their reliance on dense supervision limits their scalability
and practicality in annotation-scarce scenarios. In contrast,
our method leverages the reasoning capability of MLLMs
together with reinforcement fine-tuning, enabling joint de-
tection, segmentation, and counting with only sparse point-
level labels.

2.3. Multimodal Large Language Models
MLLMs such as GPT-4.1 [21], Llama [30], and Qwen2.5-
VL [3] combine visual perception with natural language
reasoning, enabling capabilities such as object ground-
ing, spatial reasoning, and prompt-based visual interaction.
These models have shown promise in general domains for
tasks like zero-shot grounding and segmentation, by align-
ing semantic priors from natural language instructions with
visual content. However, their application to underwater
imagery remains largely unexplored, despite the fact that
underwater monitoring often requires high-level reasoning
to distinguish between subtle visual cues. In this work, we
adapt an open-source MLLM using weak point-level super-
vision, allowing it to generate reliable bounding boxes and
keypoints under noisy underwater conditions. These se-
mantic priors are then used to guide SAM 2 for instance-
level segmentation, bridging the gap between high-level
reasoning and fine-grained perception in an annotation-
efficient manner.
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Figure 2. Overview of the proposed FishDetector-R1 framework. A two-stage detect-to-count pipeline integrates an MLLM with SAM
2 to jointly perform detection, segmentation, and counting. Reinforcement fine-tuning with GRPO and weak point-level supervision adapts
the MLLM, ensuring consistency between detection and counting while enabling pixel-wise segmentation with only sparse labels.

2.4. Reinforcement Learning for Multimodal Large
Language Models

Reinforcement Learning from Verifiable Reward (RLVR)
has emerged as an effective strategy to improve the rea-
soning, alignment, and perception capabilities of both lan-
guage models and multimodal models [35].While tradi-
tional methods like PPO [26] and DPO [23] are widely
adopted, more recent approaches such as GRPO [9] offer
improved stability and efficiency via group preference op-
timization. Building on this, frameworks like Perception-
R1 [33], Seg-R1 [32], and VisionReasoner [19] extend RL
fine-tuning to multimodal perception, showing strong re-
sults in detection, segmentation, and counting. However,
these works typically treat each task in isolation with sepa-
rate reward functions, and focus on general-domain bench-
marks, leaving domain-specific settings like underwater im-
agery underexplored. Our work addresses this gap by ap-
plying GRPO with point-level supervision and a unified
reward design that jointly couples detection and counting.
This enables all three tasks—detection, segmentation, and
counting—to reinforce one another, improving adaptation

under weak supervision.

3. Methodology

3.1. Overview
We propose a two-stage framework, FishDetector-R1, that
integrates an MLLM (Qwen2.5-VL [3]) with a segmenta-
tion foundation model (SAM 2-Large [24]) for underwa-
ter fish detection, segmentation, and counting as illustrated
in Fig. 2. In the first stage, guided by a detect-to-count
prompt, Qwen2.5-VL takes an input image, localizes each
fish with a bounding box and keypoint, and then derives
the total count from its detections, promoting consistency
between localization and counting. In the second stage,
these spatial priors are passed to SAM 2 to generate high-
resolution pixel-wise instance masks. To further adapt the
framework to underwater imagery, we apply RL fine-tuning
to Qwen2.5-VL with weak point labels. This training step
precedes SAM 2, ensuring that the MLLM learns to gener-
ate spatially consistent detections and counts, which then
serve as strong priors for segmentation. Unlike conven-
tional pipelines that combine supervised fine-tuning (SFT)
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with reinforcement learning, we directly adopt RL fine-
tuning. This choice is motivated by findings in recent work
such as Perception-R1 [33], which shows that RL with task-
aligned rewards can be more effective than SFT in percep-
tion tasks, while also avoiding additional annotation costs.
As a result, our framework delivers improved detection pre-
cision and counting reliability, while also producing refined
pixel-wise masks from only sparse point annotations, offer-
ing both accuracy and annotation efficiency.

3.2. Prompt Design
To support joint detection, segmentation, and counting, we
design a structured prompt tailored for Qwen2.5-VL, an
MLLM with strong grounding and reasoning capabilities.
As shown in Fig. 3, given an underwater RGB image, the
model is prompted to first localize each fish instance with
the total count directly derived from detections, following
a detect-to-count strategy. This formulation encourages the
model to understand that reliable counting depends on accu-
rate localization, i.e., it must “know where the fish are” be-
fore reporting how many fish there are (example in Fig. 4).
The resulting detection outputs – bounding boxes and key-
points – are also passed as spatial priors to SAM 2, enabling
high-quality instance segmentation. In this way, the prompt
design unifies all three tasks within a single pipeline.

We adopt a structured output format composed of three
distinct components: <think>, <detection>, and
<fish count>.
• The <think> field records the model’s internal reason-

ing and visual understanding process.
• The <detection> field contains structured outputs

for each fish instance, including a bounding box and a
central keypoint, which both support counting and serve
as effective prompts for SAM 2.

• The <fish count> field provides the total number of
fish, derived from the detections to ensure consistency be-
tween localization and counting.
This design enforces a detect-to-count reasoning pro-

cess, provides explicit spatial cues to guide segmentation,
and ensures response completeness. Furthermore, during
RL fine-tuning, the predicted count is compared against
weak point-level annotations to construct reward signals,
aligning detection and counting objectives without requir-
ing dense labels.

3.3. Group Relative Policy Optimization
Following recent RL fine-tuning work on MLLMs [18,
19, 32], we adopt Group Relative Policy Optimization
(GRPO) [9] as our post-training strategy. GRPO is an ef-
ficient reinforcement learning framework that removes the
need for a separate critic by directly comparing the rela-
tive quality of responses within a group. Given a task in-
put t, the current policy πθold generates a set of G can-

Input Prompt

Given an underwater image. Your
task is to identify and localize
all visible fish in the image.

Follow these steps:
Step 1: Identify all fish in the
image. For each detected fish,
draw a bounding box enclosing
its entire visible body.
Step 2: Within each bounding
box, identify the keypoint
corresponding to the center of
the fish.
Step 3: Return the number of
fish based on your detection.

<think>
In the image, there is a fish that is clearly
visible and occupies a significant portion of
the frame. The bounding box is drawn
around the fish, ensuring it encapsulates the
entire visible body of the fish. The keypoint
is located at the center of the fish body,
which is the most central point of the fish.
</think>

<detection> [{"bbox_2d": [342, 118,
642, 294], "point_2d": [595, 203],
"label": "fish"}] </detection>

<fish_count> 
         1
 </fish_count>

Output Response

Q&A Pairs from MLLMInput Image

Figure 3. Example Q&A pairs from Qwen2.5-VL using our de-
signed prompt.

didate responses {o1, o2, . . . , oG} with corresponding re-
wards {r1, r2, . . . , rG}. These rewards are normalized
within the group to compute relative advantages, which are
then used to update the policy. This group-wise formulation
provides more stable optimization while reducing training
costs compared to traditional actor–critic methods.

The GRPO objective function is defined as:

JGRPO(θ) = Eoi∼πθold

[
1

G

G∑
i=1

min

(
πθ(oi|t)
πθold(oi|t)

Âi,

clip
(

πθ(oi|t)
πθold(oi|t)

, 1− ϵ, 1 + ϵ

)
Âi

)]
− βDKL(πθ∥πref) (1)

where ϵ is the clipping threshold, β is the coefficient of the
KL penalty, and Âi denotes the normalized advantage for
response oi, computed as:

Âi =
ri − mean({r1, . . . , rG})

std({r1, . . . , rG})
(2)

By leveraging group-wise comparisons and reward nor-
malization, GRPO enables stable and sample-efficient pol-
icy optimization purely based on relative preferences.

3.4. Reward Design
The overall reward function used for RL fine-tuning con-
sists of four components: (1) a format reward, (2) an accu-
racy reward, (3) a count reward, and (4) a non-repetition re-
ward. Each component is designed to encourage the model
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to produce syntactically valid, semantically accurate, and
non-redundant outputs that align with weak point-level su-
pervision.

(1) Format Reward.
The format reward Rformat has two sub-parts: response
structure formatting and detection content formatting.
• The response is required to contain three structured tags:
<think>, <detection>, and <fish count>. A
correct structural response yields 1.0 reward.

• The content within the <detection> tag must follow
the format: {"bbox 2d": [x1, y1, x2, y2],
"point 2d": [x, y], "label": "fish"}.
If all predicted instances match this structure, the model
receives up to 3.0 additional reward points.

The total format reward is therefore bounded by Rformat ≤
4.0.

(2) Detection Accuracy Reward.
To encourage correct detection and precise localization, we
design an accuracy reward Rdetect. Predicted keypoints are
matched to ground-truth points using the Hungarian algo-
rithm within a Euclidean distance threshold. A prediction
is considered valid if its distance to a ground-truth point is
within a predefined threshold. The reward is defined as:

accuracy reward = λdetect ·
(
Nvalid

Ngt

)
, (3)

where Nvalid denotes the number of matched predictions
and Ngt the total number of ground-truth fish. λdetect spec-
ifies the maximum reward assigned to the accuracy perfor-
mance, which is set to 4.0 empirically. The accuracy reward
scales proportionally with the fraction of correctly matched
instances.

In addition, we enforce consistency between the number
of detected instances Npred and the reported count Ncount in
the <fish count> tag by introducing a match reward:

match reward =

{
0, if Npred = Ncount,

−1, otherwise.
(4)

The overall detection-related reward is then computed
as:

Rdetect = accuracy reward + match reward. (5)

This formulation jointly optimizes detection and count-
ing: accurate localization improves counting reliability,
while consistent counting further encourages complete de-
tection.

(3) Count Reward.
To further enforce correct enumeration, a count reward
Rcount is assigned based on whether the predicted count
matches the number of ground-truth instances:

Rcount =

{
1, if Ncount = Ngt

−1, otherwise
(6)

where Ncount is the number of fish reported by the model
and Ngt the total number of ground-truth fish.

(4) Non-Repetition Reward.
To mitigate repetitive responses and promote output diver-
sity, we adopt a non-repetition reward Rnon-repeat inspired by
Seg-Zero [18].

(5) Total Reward.
The total reward used for RL optimization is defined as:

Rtotal = Rformat + α ·Rdetect + β ·Rcount +Rnon-repeat (7)

where α and β control the relative weight of detection and
counting rewards. This formulation jointly accounts for
syntactic correctness, localization accuracy, count fidelity,
and output diversity, thereby providing rich supervision sig-
nals at minimal annotation cost.

In practice, the absolute scale of rewards has little effect,
while the relative balance between components is key to
final performance—consistent with GRPO’s use of group-
wise relative advantages over absolute magnitudes.

4. Experiments
4.1. Evaluation Metrics
We evaluate our framework on two main capabilities: (1)
grounding, which includes detection and segmentation,
and (2) counting, which includes count accuracy and lo-
calization.
(a) Grounding (detection, segmentation). We evaluate
grounding performance on the test split of the DeepFish
segmentation subset. For segmentation, we measure mean
Intersection-over-Union (mIoU) between predicted masks
and ground-truth annotations. For detection, we follow the
COCO evaluation protocol [17] and report Average Preci-
sion (AP) and Average Recall (AR) across multiple IoU
thresholds. Here we report the value of AP0.5:0.95 and
AR0.5:0.95, representing the mean AP and AR computed at
IoU thresholds from 0.5 to 0.95. Together, these metrics
provide a comprehensive assessment of grounding ability,
capturing both mask quality and instance-level accuracy.
(b) Counting (count accuracy, localization). We utilize
the test split of the DeepFish localization subset to evalu-
ate counting performance. To measure counting accuracy,
we employ several complementary metrics. Mean Absolute
Error (MAE) quantifies overall number prediction accuracy
while the Match Rate evaluates the consistency between the
predicted and ground-truth counts. Given predicted counts
ŷi and ground-truth counts yi for N images, the MAE and
Match Rate are calculated as:

MAE =
1

N

N∑
i=1

|ŷi − yi| , (8)
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Model Detection Segmentation Counting

AP0.5:0.95 ↑ AR0.5:0.95 ↑ Foreground ↑ Background ↑ mIoU ↑ MAE ↓ Match Rate ↑ GAME ↓

Baseline

GPT-4.1 5.47 17.43 43.77 98.69 71.23 0.387 0.796 1.394
Gemini-2.0-flash 54.60 61.24 84.01 99.64 91.83 1.879 0.582 3.434
Gemini-2.5-flash 24.10 46.46 57.14 98.85 78.00 2.228 0.568 3.081
Qwen2.5-VL 3B 44.63 62.12 45.10 97.64 71.67 0.604 0.616 1.136
Qwen2.5-VL 7B 48.05 55.84 81.25 99.58 90.42 0.579 0.706 0.915

Ours

FishDetector-Base 3B 53.58 62.21 67.88 99.10 83.49 0.647 0.691 0.901
FishDetector-R1 3B 61.71 66.64 86.47 99.69 93.08 0.386 0.760 0.613

FishDetector-Base 7B 47.52 58.67 80.86 99.56 90.21 0.497 0.715 0.924
FishDetector-R1 7B 60.71 63.63 87.90 99.78 93.84 0.398 0.765 0.587

Table 1. Unified comparison of detection (AP0.5:0.95, AR0.5:0.95), segmentation (Foreground, Background, mIoU), and counting (MAE,
Match Rate, GAME) performance across baseline and proposed MLLM variants. The best result in each column is shown in bold, and the
second best is underlined.

Match Rate =
1

N

N∑
i=1

⊮(ŷi = yi) , (9)

where ⊮(·) is the indicator function that equals 1 if the
predicted count exactly matches the ground truth and 0 oth-
erwise.

In addition, we report the Grid Average Mean Absolute
Error (GAME) [8] to compute counting errors at different
spatial scales, where each image is divided into 4L non-
overlapping grids at level L. The error is then computed
over all sub-regions:

GAME(L) =
1

N

N∑
i=1

4L∑
r=1

|ŷri − yri | , (10)

GAME =
1

4

4∑
L=1

GAME(L), (11)

where ŷri and yri denote the predicted and ground-truth
counts in the r-th region of the i-th image. Lower values of
GAME indicate better spatial consistency in counting pre-
dictions, reducing cases where totals are correct but fish are
mislocalized.

4.2. Model and Implementation
We build our framework based on the 3B and 7B vari-
ants of Qwen2.5-VL. For FishDetector-Base, we use the
frozen pretrained Qwen2.5-VL with our detect-to-count
prompt design. For FishDetector-R1, we apply GRPO
fine-tuning on the training split of the DeepFish localization
subset [22], which contains 1,600 images with point-level
fish annotations. Fine-tuning is performed on 4 × NVIDIA
A100 GPUs, with a batch size of 16 per device and 8 roll-
outs per input. Training is conducted for 4 epochs (about
400 optimization steps in total) with a learning rate of
1× 10−6.

For baselines, we adopt both open-source and closed-
source MLLMs, including GPT-4.1, Gemini-2.0/2.5, and

Qwen2.5-VL, with their publicly available prompting
strategies. We provide detailed prompt implementation for
Qwen2.5-VL and our method in the supplementary mate-
rial. All methods, including baselines and ours, are evalu-
ated under the same resolution setting by rescaling predic-
tions back to the original image size (1920×1080) to allow
direct comparison with ground truth.

4.3. Experimental Results
(a) Baseline Comparison
We benchmark our framework against strong foundation
models, including GPT-4.1, Gemini-2.0/2.5, and Qwen2.5-
VL, across detection, segmentation, and counting. As sum-
marized in Tab. 1, Qwen2.5-VL consistently achieves the
strongest zero-shot grounding and counting performance
among open-source and closed-source MLLMs, underscor-
ing its suitability as a foundation model for real-world vi-
sual applications, motivating its selection as the backbone
of our framework.

On top of Qwen2.5-VL, we further investigate two
variants of our framework: FishDetector-Base and
FishDetector-R1. This design enables a controlled eval-
uation of the contributions from prompt design and rein-
forcement learning, thereby clarifying how each compo-
nent advances detection, segmentation, and counting under
weak supervision. Detailed ablation studies are provided in
Sec. 4.4, and additional qualitative analyses are included in
the supplementary material.

(b) FishDetector-Base: Prompt-Only Adaptation
FishDetector-Base uses our detect-to-count prompt with-
out gradient-based fine-tuning. This lightweight adapta-
tion yields notable improvements, particularly for the 3B
model. Compared to Qwen2.5-VL 3B, it boosts detection
AP (44.6 → 53.6), segmentation mIoU (71.7 → 83.5),
and counting accuracy (GAME: 1.14 → 0.90; Match Rate:
0.62 → 0.69). These results show that well-designed
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To accurately count the number of fish in the image, I'll
analyze the visible parts of the fish and their positions:
1. There is one fish clearly visible near the center-right
of the image.
2. There appears to be another fish partially behind the
first one.
Given these observations, here are the detected fish:
[{"point_2d": [508, 136], "label": "fish"},
 {"point_2d": [594, 207], "label": "fish"}]
The total number of fish detected is
2 <fish_count>2</fish_count>

<think> 1. Identify Fish: The image shows a murky underwater scene with visible fish
swimming among the roots and rocks. The fish appear to be small and are
distinguishable from the other objects in the scene. 2. Bounding Box for Fish: For
each fish detected, a bounding box should tightly enclose the entire visible body of
the fish. The fish are small and scattered, so each fish should have its own bounding
box. 3. Keypoint Identification: Within each bounding box, the keypoint corresponding
to the center of the fish body should be identified. This is typically the center of the
fish's body, which is usually near the middle of the fish. 4. Count of Fish: The number
of fish detected should be returned as a count. </think>

FishDetector-R1 Qwen2.5-VL

Inaccurate
Localization

<detection>[{"bbox_2d":
[552,147,582,190],  "point_2d":
[565,170], "label": "fish"},
......, {"bbox_2d":
[522,88,552,126], "point_2d":
[536,104], "label":
"fish"}] </detection>
 <fish_count>4</fish_count>

Input Image

: GT Point Labels : Predict Keypoints : Predict bbox

Figure 4. Qualitative Comparison between Qwen2.5-VL and FishDetector-R1. On a challenging scene from DeepFish FishLoc, our
detect-to-count strategy enables more accurate localization and structured outputs.

prompts can enhance smaller models by better aligning
detection with counting and segmentation. In contrast,
FishDetector-Base 7B sees a slight drop on segmentation
quality (mIoU: 90.42 → 90.21), suggesting that larger
models benefit less from prompt-only adaptation and may
require additional alignment.

(c) FishDetector-R1: Reinforcement Fine-Tuning
Building on FishDetector-Base, FishDetector-R1 applies
reinforcement learning with a reward function that jointly
optimizes detection and spatially grounded counting. This
fine-tuning leads to consistent improvements across all
tasks. For the 3B variant, R1 raises AP to 61.7 and mIoU
to 93.1, both the highest among 3B models, while reduc-
ing MAE from 0.65 to 0.39 and GAME to 0.61. The
7B model also improves notably, achieving 60.7 AP, 93.8
mIoU, and a best-in-class 0.59 GAME, effectively recov-
ering from the slight degradation seen in its Base coun-
terpart. Figure 4 presents a comparison with the original
Qwen2.5-VL in a challenging crowded scene, illustrating
that FishDetector-R1 maintains stronger performance even
under difficult conditions.

(d) Comparison with Traditional Fully & Weakly Super-
vised Methods
We further compare our FishDetector-R1 framework with
traditional fully and weakly supervised methods. For the
fully supervised setting, we report the results from the
DeepFish benchmark [25], which utilizes pixel-wise dense
annotations to train a segmentation model with a pretrained
ResNet-50 [10] backbone. For the weakly supervised set-
ting, we report the results of A-LCFCN [14], a point-
supervised baseline trained on the same DeepFish FishLoc
subset. As shown in Tab. 2, a substantial weak-to-dense
performance gap exists (86.2 vs. 93.0 mIoU). Notably, our
FishDetector-R1 framework closes this gap entirely. De-
spite relying solely on sparse point-level annotations, our
3B variant matches the fully supervised baseline with 93.1

Method Supervision Type mIoU

DeepFish [25] Dense Annotations 93.0
A-LCFCN [14] Point Labels 86.2
FishDetector-R1 3B Point Labels 93.1
FishDetector-R1 7B Point Labels 93.8

Table 2. Comparison of segmentation accuracy (mIoU) on Deep-
Fish FishSeg dataset across different supervision methods. The
best result in each column is shown in bold, and the second best is
underlined.

mIoU, while the 7B variant surpasses it, achieving 93.8
mIoU. These results underscore the strength of our method
in combining weak supervision with the spatial reasoning
capabilities and semantic priors of foundation models. By
leveraging multimodal prompting and reinforcement align-
ment, our approach outperforms traditional weakly super-
vised methods and rivals dense annotation-based models,
offering a more scalable and annotation-efficient solution
for underwater segmentation tasks.

4.4. Ablation Study
After comparing our framework with external baselines and
its own variants, we conduct ablation studies to examine the
role of each reward component across different tasks shown
in Tab. 3, focusing on four key questions:

Q1. What is the impact of applying only the count re-
ward Rcount, and does it harm grounding quality while im-
proving the global numerical accuracy?

Q2. How does single detection reward affect model per-
formance and does Rdetect maintain reliable count predic-
tions while simultaneously enhancing grounding ability?

Q3. What are the benefits of combining both rewards?
Does the joint design yield complementary gains across de-
tection, segmentation, and counting while mitigating the
limitations of using a single reward in isolation?

Q4. How effective is the detect-to-count prompt in en-
forcing internal reasoning alignment between localized de-
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Reward Setting Detection Segmentation Counting

AP0.5:0.95 AR0.5:0.95 Foreground Background mIoU MAE Match Rate GAME

Base 47.52 58.67 80.86 99.56 90.21 0.497 0.715 0.924
+Rcount 26.46 39.91 51.71 98.59 87.82 0.414 0.770 1.346
+Rdetect 57.10 63.00 87.10 99.68 93.41 0.442 0.757 0.693
+Rcount+Rdetect 60.71 63.63 87.94 99.78 93.84 0.398 0.765 0.587

Table 3. Ablation study of FishDetector-R1 (7B) with different reward configurations. Detection (AP0.5:0.95, AR0.5:0.95), segmentation
(Foreground, Background, mIoU), and counting (MAE, Match Rate, GAME) metrics are reported. The best result in each column is shown
in bold, and the second best is underlined.

tections and global count predictions, and can reinforce-
ment fine-tuning with verified rewards further enhance this
consistency?

Results are reported for the 7B model as an example,
with additional ablations provided in the supplementary ma-
terial.
Count Reward Only. Applying only Rcount improves
global numerical accuracy, as reflected by reduced MAE
(0.414 vs. 0.497) and higher Match Rate (0.770 vs. 0.715)
in Tab. 3. However, grounding ability collapses: AP and
AR drop by over 20 points, mIoU decreases by 2.4, and
GAME worsens from 0.924 to 1.346. This indicates that
while Rcount enforces numerical regularity, it fails to pro-
vide spatial guidance, leading to mislocalized predictions
that undermine detection and segmentation quality.
Detection Reward Only. Using only Rdetect substantially
improves grounding performance, with AP increasing from
47.5 to 57.1, AR from 58.7 to 63.0, and mIoU from 90.2 to
93.4 (Tab. 3). Better localization also translates to stronger
counting consistency, as GAME improves from 0.924 to
0.693. However, global count accuracy remains limited:
MAE (0.442) is slightly worse than the count-only setting,
and Match Rate (0.757) is lower. These results show that
Rdetect excels at spatial precision but still lacks global nu-
merical control.
Joint Reward. Combining Rcount and Rdetect delivers
the most balanced improvements across tasks. Detection
achieves the highest AP (60.7) and AR (63.6), while seg-
mentation quality remains strong (mIoU 93.8). On the
counting side, MAE (0.398) is the lowest, and GAME
(0.587) shows the best spatial distribution of counts. This
configuration preserves the global accuracy gains of Rcount
while retaining the spatial precision of Rdetect, demonstrat-
ing their complementary nature in achieving robust detec-
tion, segmentation, and counting under weak supervision.

Model Alignment Rate (%)↑

3B 7B

FishDetector-Base 97.2 98.6
FishDetector-R1 99.6 100

Table 4. Alignment rate between detected instances and predicted
fish counts from model output response. Higher is better.

Internal Detect-to-Count Consistency. Tab. 4 reports
the alignment between detected fish instances in the
<detection> tag and the total count prediction in the
<fish count> tag. While FishDetector-Base exhibits
minor inconsistencies, RL fine-tuning with our comple-
mentary reward design raises alignment to nearly perfect.
This confirms that our detect-to-count design with reward-
based training enforces coherent internal visual reasoning
in the MLLM, yielding outputs that are not only more self-
consistent but also more reliable for downstream ecological
applications.

5. Limitations and Future Work
While FishDetector-R1 achieves notable gains, several lim-
itations remain. First, the computational overhead of
large MLLMs makes real-time deployment on resource-
constrained underwater platforms challenging. Future work
will explore quantization and edge-optimization to improve
efficiency. Second, the framework can still hallucinate spu-
rious detections or counts in cluttered scenes, highlighting
the need for uncertainty modeling or verification mecha-
nisms to enhance reliability. Finally, although FishDetector-
R1 is class-agnostic by design, in this study we restrict su-
pervision and evaluation to fish-only detection and segmen-
tation on the DeepFish dataset, which covers a relatively
narrow range of habitats and species. Extending to multi-
class and species-level settings (including non-fish marine
life and anthropogenic objects) is an important step toward
broader ecological impact.

6. Conclusion
We propose FishDetector-R1, a unified framework for un-
derwater fish detection, segmentation, and counting that
combines an MLLM with SAM 2. Through detect-to-count
prompting and reinforcement fine-tuning with sparse point
labels, our method achieves strong performance across
tasks on the DeepFish dataset. Notably, FishDetector-R1
bridges the gap between traditional weak and fully super-
vised models, delivering high-quality pixel-wise segmenta-
tion with minimal annotation cost. This enables scalable,
annotation-efficient fish analysis, supporting real-world ap-
plications in ecological monitoring and marine habitat as-
sessment.
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